OVERCOMING THE JARGON BARRIER

PHYSICIST

Solid state band

Valence band, VB

CHEMIST

Molecular orbital

HOMO

LUMO

Chemical potential

Molecular orbital, localized

Reduction, pH scale base

Oxidation, pH scale acid

HOMO-LUMO gap

Dipole allowed

Dipole forbidden

Vibrational mode

Jahn-Teller effect 1

ELEMENTARY BAND THEORY

Conduction band, CB Fermi energy, E_F **Bloch orbital, delocalized** n-doping p-doping Band gap, E_g **Direct band gap Indirect band gap Phonon or lattice vibration**

Peierls distotion

N atomic orbitals combine to form bonding and antibonding molecular orbitals, N energy levels.

Large rings - cyclic boundary condition

A rough rule of thumb: the separation of the energy levels in the dimer corresponds to about half width of the energy band.

Bloch functions, crystal orbitals

simple example: infinite one-dimensional array of s-orbitals

k = wavevector, a = lattice constant, n = orbital counter

Large number of discreet levels = band

Antibonding

J

Bonding

Bandwidth or band dispersion: energy difference between the highest and lowest level

Bandwidth increases with better orbital overlap

- shorter interatomic distance
- closer energy match
- topology
- density, oxides more diffuse than halides, wider bands
- localization of electrons narrow bands

Bandwidth arising from sigma > pi > delta overlap

Core orbitals – narrow bands (0.1 eV), 4f in lanthanides Valence orbitals, s, p – wide bands (10 eV) Bandwidth or band dispersion: energy difference between the highest and lowest level

p, d-orbital interactions

Two dimensional lattice

Two dimensional lattice

Band structure of a square lattice of H atoms $(d_{HH} = 2.0 \text{ Å})$

Density of states (DOS, N(E) dE) Number of levels available for electrons at different energies per unit volume of the solid.

DOS is zero in the band gap

Contributions to the total DOS of rutile

(a) Ti and O

(b) Ti d-orbitals, t_{2g} and e_g

Classification of solids

Molecular solids $-N_2$, C_6H_6 , I_2 , ...

Van der Waals forces, little change from the gas phase, electronic bands correspond to empty and filled MOs of the individual molecules.

Ionic solids – NaCl, CaF₂, NiO, ...

Charge transfer from cations to anions, energy bands made up from the atomic orbitals of cations and anions.

NaCl: 3p of Cl is the top filled band, 3s of Na is the lowest empty band.

Covalent solids – diamond, Si,

Overlap of orbitals and electron sharing between adjacent atoms. Filled bands are made up from bonding MOs, empty bands are made up from antibonding MOs.

Metallic solids – Cu, Mg, W, TiO, Simple metals – Na Very strong overlap of atomic orbitals on adjacent atoms, arising bands are very broad, 3s, 3p, and 3d merge into a single wide band, electrons move freely, little attraction to the atomic cores.

Fermi level

 $\mathbf{E}_{\mathbf{F}}$ = the thermodynamic chemical potential for electrons in the solid

Metals – boundary between filled and unfilled levels

The Fermi-Dirac distribution function:

 $f(E) = 1/[1 + exp{(E - E_F)/kT}]$

Semiconductors

Ionic solids

Example NaCl, $E_g = 9 eV$

i = ions in the gas phase

ii = ions in the lattice,Madelung potential,filled levels stabilized by positivepotential of cations,empty levels destabilized

iii = polarization energy

Delocalized Bands – Localized Bonds

Molecules: Mulliken overlap populationS 2 $c_1 c_2 S_{12}$ c_1, c_2 same sign = bonding c_1, c_2 opposite sign = antibonding S_{12} overlap integral

Solids: Overlap population-weighted density of states = crystal orbital overlap population (COOP) – for a specific bond

COOP curves Sign – positive = bonding, negative = antibonding Amplitude – depends on DOS, orbital overlap, MO coefficients

DOS and COOP for the Ti-O bonds in rutile

DOS and COOP for the Ni-Ni bonds in Ni metal

Peierls distortion

Peierls distortion – maximizing bonding, lowering the DOS at the Fermi level, bonding states down in energy, antibonding states up, a band gap opens at the Fermi level

