What is a semiconductor

Diamond structure

Rock-salt structure

Elemental semiconductors

C, Si,Ge

Compound semiconductors

III-V: GaAs II-VI: CdTe IV-VI: PbTe *Complex semiconductors*

I-III-VI: AgGaSe₂ II-IV-V: ZnGeP₂

From molecules to the solid state

In the solid state, α relates to the unit cell parameters in k-space (reciprocal space)

The k-vector denotes the momentum of the electrons moving along the bands (Bloch states)

R. Hoffman Angew. Chem. Int. Ed. 26 (1987) 846

Doped semiconductors and thermally activated behavior of electrons

Examples of doped semiconductors

		TiO _{2-x}																	
Excess of electr																			
n-type		l La																	18 VIIIA
	'	Н 15'	2 11,85											13 111A	14 1V,5	13 V.M	16 V (A	17 VILA	He 15 ²
	Z	Li 25'	Be 25 ²											В 2р'	$C \\ 2p^2$	N 2p ³	0 2p⁴	Г 2p ^s	Ne 2p ⁶
	3	Na 3s'	Mg 3s²	а ШВ	4 1VB	S MB	о VIB	7 УПВ	8	у VIIIВ	ID	II IB	12 HB	A1 3p'	Si 3p²	Р Зр ³	S 3p⁴	C1 3p ^s	Ar 3p ⁶
	٩	K 45'	Са 45 ²	Sc 34'	Ti 3d²	V 3d3	Cr 4s'3d	Mn 3d ^s	Fe 3d ⁶	Co 34 ⁷	Ni 3d ⁸	Съ 45'94''	Zn 30 ¹⁰	Ga 4p'	Ge 4p²	Аз 4р ³	Se 4pª	Be 4p ^s	Кг 4р ⁶
	5	Rb Ss'	Sr Ss ²	¥ 4d'	Z£ 4d²	Nb 4d ³	Mo Ss14d	Tc 4d ^s	Ru 4d ⁶	Rh 4d'	Ni 4d ^s	Ад жчач	Cđ 4đ ¹⁰	In 59'	Sn Sp²	ՏՆ 5թ ³	Te Sp ⁴	I Sp ^s	Xe Sp ⁶
	6	Cs 6s'	Ba 65 ²	La 50'	Hf 53 ²	Ta 50 ³	W 58156	Re 50 ⁵	0s 54 ⁶	k 50'	Ni 5d ^a	An 65'51"	Hg 50 ¹⁰	Ti 6p'	РЪ 6р ²	Bi 6p ³	Po 6p4	At 6p ^s	Rл 6р ⁶
	7	Fr 751	Ra 75 ²	Ac 6d ¹	Rf 6d ²	Db 6d ³	Sg 7s16d ³	Bh 6d ^s	Hs 6d ⁶	Mt 6d ⁷									

Deficit of electrons:

p-type

Sn_{1-x}Te

The electromagnetic spectrum

Molecular versus solid state optical absorption

http://pubs.rsc.org/en/content/articlelanding/2008/cc/b810718a#!divAbstract

Discrete energy levels

Absorption maxima

In the solid-state

Interband Semiconductor absorption

http://www.slideshare.net/cdtpv/optical-spectroscopy-56823999

Bands made up of N_A molecular orbitals

Absorption Edges

Halide perovskite structure

Perovskite stabilization conditions

 $t = (r_A + r_X)/\sqrt{2}(r_M + r_X)$

C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791.

ASnl₃: Direct band gap semiconductors

L.-Y. Huang, R. L. Lambrecht Phys. Rev. B 2013 88 165203

Halide perovskite phase transitions

C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791.

Tilting of the octahedra increases bandgap

C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791.

Lü, X.; Wang, Y.; Stoumpos, C. C.; Hu, Q.; Guo, X.; Chen, H.; Yang, L.; Smith, J. S.; Yang, W.; Zhao, Y.; Xu, H.; Kanatzidis, M. G.; Jia, Q. Adv. Mater. 2016 in press

Structural Diversity: the case of Germanium Perovskites

C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804.

Ferroelectric Halide Perovskites

CsGel

MAGel FOGel

MFOGel

Gel

C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804.

Huge Nonlinear optical second harmonic generation

C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804.