Structure Determination Using Jana2006

Structural Analysis from Single-Crystal and Powder X-ray data

Import your data

Find your data from data reduction and place them in a separate folder Start a new structure from the File -> Structure menu

File formats:
1) hkl + sum files (STOE)
2) hkl + p4p files (Bruker)
3) hkl + cif_od files (Rigaku)

4) hkl from powder data...

... you should already be there from pattern matching (LeBail fitting)

Select single crystal with known diffractometer formats

a2006		- 0	×
	Specify type of the file to be imported		
Single crystal:	known diffractometer formats		
	<u>r</u> eflection file corrected for LP and absorption		
Powder data:	O various C <u>W</u> formats		
Structure			
Structure:			
	0 from Japa 2000		
	from PDB		
Magnetic parent structure:	nuclear model made interactively		
	nuclear model from SHELX		
	nuclear model from CIF		
	nuclear model from Jana2006		
	Back (Next) Cancel (

Structure: E:\Crete\Teaching\LloC\ETV-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\/Dh2BiS3\(AuTe2\\/Dh2BiS3\(AuTe2)

Select the appropriate instrument/format

Jana2006			_	:
	Data reduction file from:			
File name (Pb2BiS3)(AuTe2).hkl		Browse		
CAD4				
O Nonius-CCD	Koala at ANSTO			
O Siemens P4	O SCD-LANL			
O Bruker-CCD	O Hasylab <u>F</u> 1			
O Bruker-CCD (raw)	O Hasylab <u>H</u> UBER			
Oxford Diffraction-CCD	Hasylab XDS			
O Oxford Diffraction-PD	○ <u>6</u> T2 LBB			
O Rigaku-CCD	O Pets electron diffractometer			
IPDS Stoe	O SENJU TOF			
O D9-ILL, D23 or Trics-Zebra	O Polarized neutrons			
○ ILL- <u>V</u> ivaldi	SHELX on I - abs.correction needed			
○ ISIS SXD				
	Back Next	Cancel		
Structure: E: \Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture	e\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)			

Check that your data are properly imported Unit cell, wavelength and temperature should be as in the experiment

Jana2006		—	×
	Complete/correct experimental parameters		
Cell parameters:	4.0997 9.3435 12.3722 90 90 90		
Number of input indices:	3 Info about metrics parameters		
<u>1</u> st modulation vector:			
<u>2</u> nd modulation vector:			
<u>3</u> rd modulation vector:			
X-ray tube	Polarization correction:		
Wave length 0.71073	Circular polarization		
	Perpendicular setting Info		
Temperature 293	O Parallel setting Info		
	Guiner camera		
	Perfectness 0.5		
	Glancing angle 6.106711 Set glancing angle		
	Back Next Cancel		

Import your reflection file (hkl) by clicking through to the menu below

Jana2006	_	×
Define the reference cell/split by twinning		
Target dimension 3		
1st modulation vector		
2nd modulation vector Data related to domain#		
3rd modulation vector Multiply input F(hkl)/I(hkl) by 1		
Accuracy		
Define transformation ma INFORMATION		
All 4426 input reflections were properly handled		
Back Next Cancel		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Click through and accept your hkl file, if correct

Jana2006				_	×
	Data repository				
	Type	Radiation			
(PD2BIS5)(AUTE2),1N	Do you want to accept made changes?	[X+ays Mo K(aipha)			
	Yes No		•		
<u>I</u> nfo <u>R</u> eimport	t Modify Delete	Undelete Import new			
	Esc Ok				
Structure: E: \Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lectu	ure\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(Au	JTe2)			

You are now in the process of finding your space group. Keep default commands

Jana2006	-	×
Tolerances for crystal system recognition:		
Original cell parameters: 4.100 9.344 12.372 90.00 90.00 90.00		
Maximal deviation for cell lengths in [A] 0.02		
Maximal deviation for cell angles in deg 0.2		
Tolerances for space group recognition:		
Maximal ave(I/sig(I)) for centering 5		
Maximal ave(I/sig(I)) for extinctions 10		
Jean Christian Super Call (Commended) Introduce twin laws in case of subgroups		
Use old twin matrices in testing		
Back Next Cancel		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Select the highest possible crystal system and point group, provided the Rint(obs/all) values are comparable. Rint will always be highest for the highest symmetry, so this requires some experience. You can return here at any time and select a different one.

Jana2006						-	×
	Sele	ct Laue symmetry					
Cystal system	Point group	Rint(obs/all) #averaged	,	Redundancy			
Triclinic	-1	8.12/10.86 866/1980	1	1.967			
Monoclinic-setti	ng "a" 2/m	10.84/13.78 560/1123	1	3.467			
Monoclinic-setti	ng "b" 2/m	10.37/13.26 550/1099	1	3.543			
Monodinic-setti	ng "c" 2/m	10.89/13.85 540/1104		3.527			
					V		
ordered by	aue symmetry	<u>D</u> etails					
O ordered by	Rint						
Averages made	from 1490/3894 reflections						
	Bad	k Next			Cancel		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\	Single-crystal lecture\practice\(P	Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuT	e2)				

Find your unit cell centering. Look for the zeroes (no systematic absence violations) with the highest symmetry

Jana2006								_	×
				Select cell centering					
		Centering	obs/all	ave(I/sig(I))					
	۲	Р	0/0	0.000/0.000		Details			
	0	А	756/1968	23.322/9.612		Details			
	0	В	739/1949	23.604/9.590		Details			
	0	С	565/1877	17.301/5.912		Details			
	0	I	744/1878	23.473/9.918		Details			
	n.a.	R-obverse	994/2603	25.279/10.292		Details			
	n.a.	R-reverse	995/2604	25.537/10.396		Details			
	0	F	1030/2897	21.772/8.406	ļ	Details			
	the pr	ng: The cell centi ogram first trans	ering need not be one form the cell to the re	e you expect from collection educed form.	as				
	Moreo	ver after your se ever the centring	election the program n is not the standard o	makes another transformatione.	n				
				(_				
				Back Next		Cancel			
							•		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemis	try\2020) lectures\Single-	-crystal lecture practio	ce\(Pb2BiS3)(AuTe2)\(Pb2Bi	S3)(AuTe2)				

Select the space group with the highest possible symmetry

Accept you unit cell and proceed (standard or not is a matter of taste)

Jana2006	_	о ×
Final step of the space group test		
• accept the space group in the standard setting:		
Space group: Pmmn Cell parameters: 12, 3722,4, 0997,9, 3435,90,90,90		
Transformation matrix: a' = 0.000*b +1.000*c		
D = 1.000°a +0.000°c c'= 0.000°a +1.000°b +0.000°c		
C accept the space group transformed into the original cell:		
Space group: Pmnm Cell parameters: 4.0997 9.3435 12.3722 90 90 90		
◯ discard the changes		
<u>A</u> ccept twinning matrices induced by the space group test		
Back Finish Cancel		
Structure: E:\Crete\Teaching\Upc\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Read through the transformed hkl file. Keep default settings

Jana2006	_	×
Reflections I < 3 *sig(I) will be sorted as unobserved		
Note: this number is not interpreted by REFINE		
use in output file E-format (recommended for data with large dynamical range)		
Import statistics - obs/all		
1601/4426 reflections read from input file		
1601/4426 reflections written to output file There were no rejections due to systematic extinctions.		
Back Cancel		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Read and merge your (symmetry equivalent) reflections. Keep default settings. Accept and proceed.

Jana2006	_	×
 Perform averaging Only sort and apply culling if activated 		
⊖ Use <u>n</u> on-averaged data h k l The slowest varyi ps index		
Summary after averaging The fastest varyin Summary after averaging Rint(obs/all) = 12.44/15.98 for 401/750 reflections averaged from 1601/4426 reflections Eull print Apply 1/sig(I) wei Reflections II-1(av Reflections II-1(av Display graph sig(
Sigma(I(ave)) from: Poisson (• Equivalents (•)		
Maximum O Back Cancel		
Structure: E: \Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

This is where you solve the structure. Type your formula and number of formula units as your best estimate. All elements present should be typed. Check density to make sense.

	Stru	ture solution	
Ouse SIR 2014 ▼	Formula	Pb2 Bi S3 Au Te2	2
💿 use Superflip	Formula <u>u</u> nits	2	Calculate density
Ouse Shelxt	Actual space grou	p: Pmmn	Change the space group
allow manual editing of the comman	d file before start		
use previously prepared input file for			
use old solution and reinterpret it		Biso	: 0
Repeat Superflip: Until the converg	ence detected	Maxcycles	:: 300000
Repeat Superflip: Number of runs			
Use local normalization			
Use a specific random seed			
Define explicitly delta value			
Iteration scheme: CF	For pea	k search use: (EDMA - fixed composition
O LDE		(EDMA - fixed number of atoms
O AAR		(EDMA - peak interpretation by Jana2006
Starting model: Random phases Patterson super	osition map	(Peaks from Jana2006 Peaks from Jana2006 but first run Fourier
J		,	
Run solution		g Draw str	ucture Draw 3d map
	Accept last solu	ion Qui	t [

Make sure

- Superflip (the program),
- CF (the method)
- random phases
 (the starting model) are selected.

Run solution

Jana2006

Find Find next	<u>Go</u> to <u>P</u> rint	PgTop Open in	editor Close			
-1:	-x1	-x2	-x3	6.528	X0000000000000000000000000000000000000	
a(0,0,1):	1/2+x1	x2	-x3	49.305	*******************	
b(0,0,1):	x1	1/2+x2	-x3	57.411	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
2(0,1,0):	-x1	x2	-x3	77.564	XXXXXXXXXX	
2(1,0,0):	xl	-x2	-x3	77.735	XXXXXXXXXX	
b(1,0,0):	-x1	1/2+x2	x3	77.912	XXXXXXXXXX	
a(0,1,0):	1/2+x1	-x2	x3	79.292	XXXXXXXXX	
m(0,0,1):	xl	ж2	-x3	82.672	XXXXXXXX	
n(1,0,0):	-x1	1/2+x2	1/2+x3	136.028	X	
2_1(0,0,1):	-x1	-x2	1/2+x3	139.358	X	
c(1,0,0):	-x1	x2	1/2+x3	142.148	X	
n(0,1,0):	1/2+x1	-x2	1/2+x3	148.203	X	
c(0,1,0):	×l	-x2	1/2+x3	149.080	X	

Space group derived from the symmetry operations:

HM symbol:	Prama		
Hall symbol:	-P 2ab 2a		
Fingerprint:	3300320n{641Y63}20	(1/4,3/4,0)	
Symmetry operat	tions:		
1:	×l	x2	x3
2(0,0,1):	1/2-x1	1/2-x2	x3
2_1(1,0,0):	1/2+x1	-x2	-x3
-1:	-x1	-x2	-x3
2_1(0,1,0):	-x1	1/2+x2	-x3
n(0,0,1):	1/2+x1	1/2+x2	-x3
m(1,0,0):	1/2-x1	x2	x3
m(0,1,0):	×l	1/2-x2	x3

Position of the origin in the CF map: 0.6208 0.9422 0.9742 Agreement factors of individual generators: Number smb agreement

6 n 0.20 7 m 0.32 8 m 6.00

Overall agreement factor: 3.73

You can obtain more information about the reconstructed reflection phases by using 'expandedlog yes'.

Electron density written to file (Pb2BiS3) (AuTe2)_Superflip.m81.

End of the calculation: 09.DEC 2020, 22:18:35

Superflip version: 05/17/16 12:53

– 🗆 X

Ŧ

Draw your structure with your visualizer (VESTA, DIAMOND, MERCURY or anything else) to make sure you are happy (Draw + return). You need to set the software path in JANA2006 (Tools-> Programs-> . Accept solution if you are happy with it, else try a different model.

Jana2006					_	×
		Struc	ture solution			
C	⊖use SIR 2014 ▼	Formula	Pb2 Bi S3 Au Te2			
	🖲 use Superflip	Formula units	2	Calculate density		
	🔿 use Shelx <u>t</u>	Actual space group	o: Pmmn	Change the space group		
-	allow manual editing of the comma	nd file before start				
	use previously prepared input file f	for Superflip				
	use old solution and reinterpret it		Biso:	0		
	Repeat Sup	filter Add	Fourier peaks	Reset selection		
	Repeat Sup		atomic centers	Reserver		
	Use local no (6	-0)/0/0 number o	finduded atoms/n	eaks/centers		
	Use a speci	Draw+return	Ouit Draw	+continue		
	Define expli	<u>Brannetani</u>	<u>g</u> ar			
I	Iteration scheme: 💿 CF	For peal	k search use: 🛛 🔾	EDMA - fixed composition		
	O LDE		0	EDMA - fixed number of atoms		
s	Starting model: () Random phases	1		Peaks from Jana2006		
	O Patterson super	position map	Č	– Peaks from Jana2006 but first run Fourier		
	Run solution	Open the listing	g Draw stru	cture Draw 3d map		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal.Ch	nemistrv\2020 lectures\Single-crystal le	cture\practice\(Pb2	3iS3)(AuTe2)\(Pb2	3iS3)(AuTe2)		

Inspect the tabs to make sure everything is correct

Jan	a2006							- 0	×
File	Edit/View	Run	<u>W</u> izards	Parameters	Tools				
						EditM50	Edit <u>a</u> toms	→ ← Edit profile	
					Struct	्र्यू ३३३ ture solution	Fourier	<u>Contour</u>	
						Refine	<u>D</u> ist	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ <u>Matrix calculator</u>	
					۲ Pl <u>o</u> t	t structure	Profile viewer	<u>G</u> rapht	
S	etCommands								

Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)

Check M50. The information should agree with your input

Jana2006 - Editm50	-	\times
Define/modify basic structural parameters: Cel Symmetry Composition Multipole parameters Magnetic parameters Space group Pmm Select from list Select from list Select from list		
Construction Construction (1) × y z Image: State of the state o		
Esc Ok		
ture: E:{Crete[Teaching[Usc(ETY-453_Crystal Chemistry]2020 lectures}[Single-crystal lecture]practice][Pb2863](AuTe2)][Pb2863](AuTe2)		

Check Edit atoms. This is what results from structure solution.

ana2006										_	\times
	Step #1: Select atoms to be used -> 0 selected										
	Bi1										
	Bi2										
	Pb1										
	Te1										
	S1										
	52										
	•						►				
		Cala	et all			afrach (
				Select rejected	<u>¤</u>						
			Select agva								
	Step #2: Select ac	tion by right mouse	e click or by this bu	tton: Action							
	Left mou	se double click star	ts the Edit/Define a	action							
				5 (0)							
				OK							
ure: E:\Crete\Teaching\UoC\ETY-453_Crys	tal Chemistry\2020	ectures\Single-crys	tal lecture practice	e\(Pb2BiS3)(AuTe2)	\(Pb2BiS3)(AuTe2))					

Inspect your atoms (double click)

Jana2006	- D ×	Jana2006	– 🗆 X
Step #1: Select atoms to be used -> 1 selected Bi Atom edit Bi Atom edit Bi Atom Eli Iype Bi v atom type Si parameter(s): • jsotropic atom name (JANA's of • jarmonic (anisotropic) (your choice) • jarmonic • Use TLS Ste Esc Ok • to the second secon	Edit pe choice)	Step #1:Select atoms to be used -> 1 selected OCCUPS To To To To To To To To To To	
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		Structure: E: \Crete \Teaching \Joc/\FTY-453_Crystal Chemistry \2020 lectures \Single-crystal lecture \practice \Pb2BiG3)(AuTe2) \\Pb2BiG3)(AuTe2)	

Setup the refinement process (right click)

	Refine com	mands		
Basic	Select/Listing	Various	Modulation	
Number of cycles	100 🚔 🗌 Use Marguart technique	e 💿 Sigma weight	t Instability factor 0.01	
Damping factor	0.1 Fudge factor	Instabili	ity factor from reflection statistics	
		Use Wit	son's modification	
		. on <u>n</u> ogra		
Use dynamical	LS method => if Rw is ingreased by 10%	reduce the damping b	y a factor 2	
	After 3 cycles	try to enlarge it back.		
Check for con	ergence => stop if max(change/s.u.) <	0.05 in 1	consecutive cycles.	
✓ Disable atoms	having too large isotropic ADP parameter =>	ADP(iso) limit for disablin	ng 0.2	
Automatic gree Automatic gree Automatic gree Zefinements c Arter last cycl Correct for last Correct for last Warning: the	ement gys n F(obc)**2 an of Fourjer bda/2 effect mica Pfect mic coordinates andonize procedure will be appled just once d	Maximal random displa	scement in Ang	

Jana2006 - Refine-commands	-	×
Refine commands		
Basic Select/Listing Various Modulation		
Indicate/Select reflections:		
Ungberved reflections: I< 2 sig(1) V Use unobserved reflections		
Not matching reflections: F(cols) > 2 *sig(F(obs)) Skip not matching reflections		
Apply sn (th)/Ambda limits		
Skip reflection having user's flag(s)		
Mow to handle weak reflection: As in old versions - a uniform sidificibil weak reflections		
Use method Seler, Schweizer & Dunitz		
O Use for weak F(obs) Bayes statistics		
Listing commands:		
Print of reflections suppresed Print of reflections allowed:		
before the first cycle and after the last cycle O Not matching reflections Print twn/overlap details		
G after the last cycle O All reflections ✓ Print statistics		
Print correlation larger than 0.9		
Define datablocks used in the refinement Define sig(1(hid)) for powder		
Esc Ok		
Structure: E:\Crete\Teaching\LloC\FTY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb28IS3)(AuTe2)\\Pb28IS3)(AuTe2)		

All set (Save and Start)

Jana2006 - Refine-commands	-	×
Do you want to save new commands?		
Yes No Yes+start No+start		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

This is the result. GOF should be close to 1. R(obs) (structure quality) should be as low as possible < 10% Refinement stops once Maximum change < 0.05 or when cycles run out

Inspect your atoms again

Thermal parameters and some coordinates do refine. Coordinates at special lattice positions

do not refine. They are fixed due to symmetry

Jana2006	-	×
Step #1: Select atoms to be used -> 0 selected		
Bi Define Edit		
Au Te S1 ai 0.25 x 0.5 y 0 z 0.310641 v S2 Uiso 0.026325 v		
Refine all Fix all Reset Show/reset site occupancy Apply site symmetry Show symmetry restrictions Image: Comparison of the special parameters: Apply		
Ster		
Structure: E: \Crete \Teaching \UoC \ETY-453_Crystal Chemistry \2020 lectures \Single-crystal lecture \practice \(Pb2BiS3)(AuTe2) \(Pb2BiS3)(AuTe2)		

This is your structure so far. Some atoms look ok, but some atoms are mislabeled

Change the atoms in a way it seems appropriate.

	Jana2006	– 🗆 X
Inn2006 Step #1: Select atoms to be used →0 selected Ba Tet S1 S2 S2 Select atom by right mouse dick or by this button: Select aginanced Step #2: Select actors by right mouse dick or by this button: Select aginanced Esc Ck	X Ana2005	
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\Pb2BIG3)(AuTe2)\Pb2BIG3)(AuTe2)	Structure: E:\Crete\Treaching\Uoc\ETV-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BIS3)(AuTe2)\(Pb2BIS3)(AuTe2)	

Refine again. This is the new structure

Check the formula in M50. Is the unit cell contents complete?

Jana2006 - Editm50		_	×
	Define/modify basic structural parameters: Cell Symmetry Composition Multipole parameters Magnetic parameters Chemical formula - for CIF		
	INFORMATION everything looks good Formula from M40 : Au Bi Pb2 S3 Te2 all atoms assigned Molecular weight = 1171.71 all atoms assigned Calculated density = 8.2109 g.cm**(-3) Absorption coefficient mi(Mo-Kalfa) = 75.968 mm**-1 Absorption coefficient mi(Mo-Kalfa) = 75.968 mm**-1 ave functions MOLLY O MOLLY		
	Ok		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chem	istry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Once we have the structure and we are happy with the atoms, we start refining the thermal motions. This is very important when heavy atoms are present.

Jana2006 - 🗆 X	📕 Jana2006 — 🗆 🗙
Step #1: Select atoms to be used -> 6 selected Au Pb B Te1 S1 S1 S2 Select al Select al Select al Select al Step #2: Select action by right mouse dok or by this buttor: Action Left mouse double dok starts the Edt/Define action Esc	Line2006 ×
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BIS3)(AuTe2)\(Pb2BIS3)(AuTe2)	Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BIS3)(AuTe2)\(Pb2BIS3)(AuTe2)

Refine again. Notice how the statistics improve drastically. With R<10% and wR<20%, you are about to complete the refinement. Hard part is done!

Before you finish. Make sure you check the details and right your files properly. First part is Fourier, followed by Dist

Run Fourier (right click)

Select difference Fourier to assign unaccounted electron density to new atoms. Ok and start.

Jana2006 - Fourier-commands	_	×
Fourier commands Basic Scope Peaks		
Map type: F(obs)**2 - Patterson F(calc)**2 - difference Patterson F(obs)**2 - F(calc)**2 - difference Patterson F(obs)**2 - F(calc) - difference Fourier Agply sn(tr F(obs)+F(calc) - difference Fourier ant Optime multipole deformation map static multipole deformation map old - shape function Difference between two Fourier maps		
Esc Ok		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

Select No. All the atoms are present.

If there are atoms missing, you click yes on this menu. Choose to look for new atoms and select reasonable distances for new atoms. Not too close and slightly above what you expect for bonding distance

Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)

Include and name the new atoms. In this case, there is not appreciable density close to the atoms. Seems that all atoms have been found. No additions needed

Jana2006 - Fourier							-	×
	List of peaks	Equivalent coordi	nates	Distance	Atom			
Max1		0.152549 0.000000	0.277476 -	as typed in				
Max4		0.152549 0.000000	0.277476	0.60	Bi2			
Max5		0.652549 -0.500000	0.722524	2.93	S2			
Max6		0.347451 -0.500000	0.722524	2.93	S2			
Max8		0.652549 0.500000	0.722524	2.93	S2			
Max9		0.347451 0.500000	0.722524	2.93	S2			
		-0.152549 0.000000	0.277476	3.11	Te1			
		0.152549 0.000000	0.277476	3.11	Te1			
		0.347451 0.500000	0.722524	3.11	S1			
		0.347451 -0.500000	0.722524	3.11	S1			
		0.152549 0.000000	0.277476	3.22	S1			
		0.152549 0.000000	0.277476	3.31	Au1			
	<u> </u>	▲			<u> </u>			
				(
Peak:Max1 Cha	rge : 7.860		Include selec	ted peak				
			No peaks ir	nduded				
			No atom m	odified				
		<u>F</u> inish						
						_		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020	ectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)					

Now this is your new atom list. Modify, then, run refine again. And so on and so forth, until all atoms are present.

Jana2006	×
Step #1: Select atoms to be used -> 0 selected	
Bi1	
Bi2	
Au1	
S1	
Bi3	
S3	
Bi4	
Te2	
Select all Select rejected Refresh	
Select advanced	
Step #2: Select action by right mouse dick or by this button: <u>Action</u>	
Left mouse double click starts the Edit/Define action	
Esc Ok	
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)	

HOWEVER, in our case we have selected No. This is what comes out of Fourier.

HOWEVER, in our case we have selected No. This is what comes out of Fourier.

📕 Jana	a2006 - Fo	ourier																	_	×	
Find	Find n	ext	Go to	Print Pg]		Open in e	editor	Close													
	x	У	z	charge	rl	ho r	el				x	У		z	charge	rho	rel				
1. 0.	2500 0.	2500	0.0289	2.54	7.0	05 9	999			6.	0.5753	0.250	00 0	0.7889	1.65	5.92	649				
2.0.	5714 0.	2500	0.5713	1.86	4.0	05 7	32			7.	0.4049	0.250	00 0	0.0997	1.58	6.13	621				
3.0.	5601 U.	2500	0.9760	1.85	6.5	51 7	28			8.	0.7500	0.250	00 0	7500	1.52	8.98	598				
5. 0.	2500 0.	2500	0.5124	1.73	3.9	98 6	580			10.	0.5923	0.250	00 0	0.9138	1.43	3.98	559				
				Th	is is w	vhat y	you a	are lo (in e/	oking ų uni	for.	Unacc	ount	ed								
				lt i	is nos	itive	for e	lectro	n def	ficit											
				101	is pos	itive		lectre	Ji uei	icit											
					~																
		.an	d ne	egative	e tor	rele	ecti	ron	exce	ess	(list	be	0	w)							
Program	a for n-	dime	nsional	Fourier s	ynthesi	is												page= 4			
structu	ire :															19	04:12	14-12-20			
Searchi	ng for	nega	tive pea	aks - maxim	mum nur	mber o	of pea	ks to	be fou	nd :	10										
The lis	t of ne	gati	ve peaks	s written (to the	m40	file														
																					T

Run Dist (right click)

Select all the parameters that you want to be written in your final .cif file. Click ok and start the program.

Jana2006 - Dist-commands	_	\times
Distance commands		
Basic Select atoms Modulation		
Round input coordinates Calculate: Angles Torsion angles		
Best planes		
Reference direction		
Define coefficients for bond valences d(min) 0		
d(max) derived from atomic radii and typical distances		
Report violations of the Hirshfeld's condition if U(proj) > 3 *s.u.		
Listing form		
without symmetry code vith symmetry code		
Include peaks from Fourier calculation		
none maxima minima both		
Ok		
Structure: E:\Crete\Teaching\UoC\ETY-453_Crystal Chemistry\2020 lectures\Single-crystal lecture\practice\(Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)		

This is the Dist output file. Bond angles and bond distances are included.

Jana2006 - Dist				—	×
Find Find next Go to Print	PgTop Open in editor Close				
Distances and angles will be ca	alculated from d(min) = 0.000	to specific maximal distances	as listed below expanded by 15%:		≜
Au-Au 2.880 R Au-Bi 3.260 1 Bi-Bi 3.640 R Bi-Pb 3.570 1 Pb-Pb 3.500 R Pb-S 2.744 1 S-S 2.080 R S-Te 2.410 1 Te-Te 2.740 R	R Au-Pb 3.190 R Au-S R Bi-S 2.631 T Bi-Te I Pb-Te 3.120 R R	2.341 T Au-Te 2.810 R 3.190 R			
T typical distances taken (R distance as derived from	either from the file distribut atomic radii:	ed with Jana program or defined	l by user		
	Atom type At	om radius			
	Au Bi Pb S Te	1.440 1.820 1.750 1.040 1.370			
**************************************	S280.9(4) S289.1(2) S2160.5(5)	S2134.9(2) Pb4.081(3) Bi90.000(5)	S284.0(2) S2		
Tel	S12.974(4) S280.9(4) S2160.5(5) S289.1(2)	Bi90.000(5) S193.99(6) S2134.9(2) S2134.9(2)	S2		
Tel2.7150(19) Tel179.17(18) Tel81.94(6)	S22.794(12) S279.6(3) S279.6(3)	S246.2(2) S246.2(2) Bi4.0997(14)	S2167.9(4) S289.0(3) S2		
Tel	S2	S190.00(7) S245.1(2) S2134.9(2)	52		
**************************************	**************************************	S245.1(2) S2134.9(2) Bi4.0997(14)	* atom Tel * ***********************************		
Bi4.081(3) Sl134.42(10) Sl134.42(10) S287.6(3) S287.4(2)	Pb4.081(3) Pb172.02(10) Bi90.000(5) Bi93.99(6) S191.90(6)	S190.00(7) S2134.9(2) S245.1(2) S2134.9(2) S2134.9(2)	Au98.05(9) Au2.7150(19) * **********************************		
S245.4(2) S12.974(4) S187.13(11) Calculating of distances, angle structure :	S246.2(2) S246.2(2) S2134.9(2) es, torsion angles and best pl	S12.69(2) S284.0(2) S284.0(2) anes	Pb2.974(4) Pb87.13(12) page= 4 19:57:01 14-12-20		
Pb					

Finalize the structure by making a .cif file. All your work is written in this single file.

This is how your folder should look like once you are done.

| 🗸 🚽 (Pb2BiS3)(AuTe2)

File Home Share

hare View

← → ~ ↑ <mark>-</mark> ·	« Tea	aching > UoC > ETY-453_Crystal Che	mistry > 2020 lectures > Single-c	rystal lecture > prac	tice > (Pb2BiS3)(AuTe2)	∽ ē	🔎 Search (Pb2Bis
		Name	Date modified	Туре	Size		
📌 Quick access		(Pb2BiS3)(ΔμTe2) cif	2/9/2014 1·57 ΔM	Mercury File	10 KB		
📃 Desktop	A	(Pb2BiS3)(AuTe2) dis	12/14/2020 7:57 PM	DIS File	20 KB		
👆 Downloads	*	(Pb2BiS3)(AuTe2) fou	12/14/2020 7:04 PM	FOU File	9 KB		
Documents	*		2/9/2014 12:45 AM	HKI File	147 KB		
Pictures	*	(Pb2BiS3)(AuTe2).inflip	12/14/2020 6:34 PM	INFLIP File	43 KB		
2020 Lectures		(Pb2BiS3)(AuTe2).I51	12/14/2020 8:02 PM	L51 File	1 KB		
dat files		(Pb2BiS3)(AuTe2).m40	12/14/2020 7:04 PM	M40 File	5 KB		
		(Pb2BiS3)(AuTe2).m50	12/14/2020 7:57 PM	M50 File	1 KB		
DBA2AgBiBr8		(Pb2BiS3)(AuTe2).m70	12/14/2020 7:59 PM	M70 File	6 KB		
exams		(Pb2BiS3)(AuTe2).m80	12/14/2020 6:53 PM	M80 File	128 KB		
OneDrive		(Pb2BiS3)(AuTe2).m81	12/14/2020 7:04 PM	M81 File	366 KB		
		(Pb2BiS3)(AuTe2).m83	12/14/2020 6:53 PM	M83 File	111 KB		
This PC		(Pb2BiS3)(AuTe2).m85	12/14/2020 6:53 PM	M85 File	3 KB		
🧊 3D Objects		(Pb2BiS3)(AuTe2).m89	12/9/2020 10:17 PM	M89 File	34 KB		
📃 Desktop		(Pb2BiS3)(AuTe2).m90	12/9/2020 10:18 PM	M90 File	39 KB		
Documents		(Pb2BiS3)(AuTe2).m95	12/9/2020 10:18 PM	M95 File	978 KB		
🖶 Downloads		(Pb2BiS3)(AuTe2).ref	12/14/2020 6:53 PM	REF File	39 KB		
h Music		(Pb2BiS3)(AuTe2).rre	12/9/2020 10:18 PM	RRE File	25 KB		
Dictures		(Pb2BiS3)(AuTe2).s40	12/14/2020 6:53 PM	S40 File	12 KB		
		(Pb2BiS3)(AuTe2).sum	2/9/2014 12:42 AM	SUM File	239 KB		
Videos		(Pb2BiS3)(AuTe2).usd	12/14/2020 8:02 PM	USD File	1 KB		
L Windows (C:)							
New Volume (E)	:)						

New Volume (E:)

All files can be opened with notepad and contain information on what you did so far.

21 items

Tweaks and Tricks

Jana2006 - Refine-commands				_	×
	R				
	Basic Select/Listing	Various	Modulation		
	Indica	te/Select reflections:			
Ung	bserved reflections: I< 2	*sig(I) <u>U</u> se unobse	erved reflections		
Not	matching reflections: F(obs)-F(calc) > 2	*sig(F(obs)) Skip not ma	tching reflections		
	Apply sin(th)/lambda limits				
sin(th)/lambda min. 0 max.	0.6			
Skip	o reflection having user's flag(s)				
• • •	How to As in old versions - a uniform sig(Fobs) weak refie Use method Seiler, Schweizer & Dunitz Use for weak F(obs) Bayes statistics	handle weak reflection: ctions			
•	Li Print of reflections suppresed Print of reflections allowed:	sting commands:	_		
⊖ ● Prin	before the first cycle and after the last cycle after the last cycle t correlation larger than 0.9	 Not matching reflections All reflections 	Print t <u>w</u> in/overlap details		
	Define datablocks used in the refine	ment Define sig(I(hkl))	for powder		
	1	Esc Ok			
cture: E:\Crete\Teaching\LloC\ETY-453_Crystal Chem	istry/2020 lectures/Single-crystal lecture/practice//	Pb2BiS3)(AuTe2)\(Pb2BiS3)(AuTe2)			

If your data are bad, or there is no intensity at high 20 angles, then you can eliminate these data. You do this by making the $\sin(\theta)/\lambda$ term to correspond to $2\theta \sim 50^{\circ}$ ($\theta = 25^{\circ}$) for the wavelength you are using. This will immediately omit all data above this angle.

The Fourier map. Contour plot command

Jana2006 - Contour		– 🗆 X	
		Quit	
		Print	
		Save	Click the
		Run 3d maps	now one
		Run <u>M</u> CE	new one
		M ₁ M±	Accent th
		<u>G</u> o to	/ coope ci
		Movie	
		<u>Contours</u>	Jana2006 - Fourier-commands
	ap C Draw mans as calculated	Atoms edit	
() Ose old maps () Calculate new ones	Draw a general section	Atoms ON	
The old map is F(obs)-F(calc) -	difference Fourier	<u> </u>	
	Esc Ok	Curves	
		Seardh	
		Search all	
		Err ON	
		Options	

Click the contour icon and select calculate new ones in the next menu.

Accept the changes in the menu after that.

	Fourier commands		Ru
Basic	Scope	Peaks	
Map type F(obs)-F(calc) - diff	erence Fourier	U(so)	<u> </u>
Omit not-matching reflections			
Reflections with F(obs)>	*F(calc) will be o	omitted	1—
Use weighting of reflections	~		
Apply sin(th)/lambda limits			
sin(th)/lambda min	ma <u>x</u> .		
Define reference structure		Browse	At
			At
	Ok		

You can open the menu again using the new plot command. Choose the scope to orient the unit cell in the direction of your choice. You want to see the unit cell along the a-axis in this example

Run a difference Fourier map and select a 2x2x2 supercell viewed along the a-axis

Fourier map (electron density on the atoms)

Difference Fourier map (electron density on not on the atoms)

